POSTER No. 3094

EZH2/EZH1 inhibitor tulmimetostat (CPI-0209) in patients with advanced solid tumors or hematologic malignancies: Preliminary Phase II results

Charles Drescher,^{1*} Harriet S. Walter,² Thomas Gastinne,³ Nehal Lakhani,⁴ Vincent Ribrag,⁵ Drew Rasco,⁶ Martin Gutierrez,⁷ Ryan Sullivan,⁸ R. Donald Harvey,⁹ Kalyan Banda,¹⁰ Michal Kwiatek,¹¹ Alejandro Martin Garcia-Sancho,¹² Linda Duska,¹³ Pier Luigi Zinzani,¹⁴ Anjali Thakur,¹⁵ Lennart Kann,¹⁵ Nicola Faulhaber,¹⁵ Julia Jauch-Lembach,¹⁵ Hedy Kindler¹⁶

¹Swedish Cancer Institute, Seattle, WA, USA; ²University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, UK; ³Service d'hématologie clinique du CHU de Nantes, Nantes, France; ⁴START Midwest, Grand Rapids, MI, USA; ⁵Centre de Lutte Contre le Cancer (CLCC), Gustave Roussy (Institut de Cancerologie Gustave-Roussy), Villejuif, France; ⁶START San Antonio, San Antonio, TX, USA; ⁷Hackensack University Medical Center, Hackensack, NJ, USA; ⁸Massachusetts General Hospital, Boston, MA, USA; ⁹Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA; ¹⁰Fred Hutchinson Cancer Center; Seattle, WA, USA; ¹¹Centrum Medyczne Pratia Poznań, Skorzewo, Poland; ¹²Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain; ¹³University of Virginia, Charlottesville, VA, USA; ¹⁴IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy; ¹⁵MorphoSys AG, Planegg, Germany; ¹⁶University of Chicago, Chicago, IL, USA

OBJECTIVE

To report updated preliminary Phase II results with the investigational EZH2/EZH1 inhibitor tulmimetostat as monotherapy in multiple advanced malignancies

SUMMARY

- > Among the solid tumor cohorts, the ovarian (M2), endometrial (M3) and mesothelioma (M5) cohorts have achieved eligibility for Stage 2 expansion following confirmed responses to tulmimetostat monotherapy
- > Complete and partial responses have also been observed in the lymphoma (M4) cohort, which is using a single-stage enrollment design
- > The safety profile of tulmimetostat is consistent with the mechanism of EZH2 inhibition, and the majority of the most common TEAEs are Grade 1 or 2
- > These preliminary findings in heavily pretreated patients with multiple tumor types, including tumors with ARID1A alterations or BAP1 loss, support ongoing investigation of dual EZH2/EZH1 inhibitor tulmimetostat

References: 1. Eich ML, et al. Cancer Res 2020;80(24):5449-58; 2. Lakhani NJ, et al. J Clin Oncol 2021;39(15 suppl):3104; 3. Wu R, et al. Cancer Res 2021;81(13_Suppl): Abstract 2126; 4. ClinicalTrials.gov. NCT04104776. https://clinicaltrials.gov/ct2/show/NCT04104776. Accessed 20 April 2023; 5. Papadopoulos KP, et al. Eur J Cancer 2022;174(Suppl 1):S67[Abstract 188]; 6. Kindler H, et al. Eur J Cancer 2022;174(Suppl 1):S31–2[Abstract 89] (Poster presented at ENA 2022. PB079); 7. Cheson BD, et al. J Clin Oncol 2014;32(27):3059–68. Acknowledgements: This study was funded by Constellation Pharmaceuticals Inc., a MorphoSys Company. Medical writing assistance was provided by Emma Leah, PhD of Syneos Health, UK, and funded by MorphoSys AG. The authors thank Dr Elvire Pons-Tostivint for her contribution to the study.

Tulmimetostat is an investigational product and has not been approved by any regulatory authority. **Correspondence:** Charles Drescher (cdresche@fredhutch.org)

BACKGROUND

- > Epigenetic regulation by EZH2 is involved in several tumorigenic contexts, including tumors with ARID1A mutations or BAP1 loss¹
- > Tulmimetostat (CPI-0209), a next-generation, oral, dual EZH2/EZH1 inhibitor under investigation, has demonstrated improved on-target residence times, lower clearance rates (owing to no induction of CYP3A activity), and more potent anti-tumor activity versus 1st generation EZH2 inhibitors in preclinical studies^{2,3}
- This ongoing Phase I/II study (NCT04104776)⁴ is evaluating the anti-tumor activity and safety of tulmimetostat in advanced solid tumors and lymphomas
- Phase I results^{2,5} supported a recommended Phase II dose of 350 mg once daily
- Preliminary Phase II results from July 2022 were previously presented⁶

METHODS

- > The Phase II expansion is evaluating tulmimetostat 350 mg in a continuous once-daily dose in six cohorts by tumor types (Figure 1)
- The Simon 2-stage study design requires one objective response in Stage 1 (n=10 patients) for expansion to Stage 2 (plus n=19)
- Cohort M4 (lymphoma) is using single-stage enrollment
- > The study is enrolling adult patients with disease that has progressed on applicable prior lines of treatments, and that meets other tumor-specific inclusion criteria as listed on ClinicalTrials.gov⁴

[•]Histologically or cytologically confirmed progressive tumor. ⁺Patients in all cohorts have progressive disease with applicable prior lines of therapy. CR, complete response; DLBCL, diffuse large B-cell lymphoma; GCB, germinal-center 3-cell-like; ORR, objective response rate; PR, partial response; PTCL, peripheral T-cell lymphoma.

Disease control

pharmacodynamics

RESULTS

- > As of February 14, 2023:
- 81 patients received ≥1 dose of tulmimetostat (safety) analysis set)
- 75 patients also had \geq 1 post-baseline response assessment or discontinued the treatment prior to their first post-baseline assessment for any reason (efficacy evaluable set)
- 55 patients discontinued treatment (progressive disease, n=37; adverse events [AEs], n=9; patient withdrawal, n=5; physician decision, n=3; and other, n=1), and 26 were ongoing on treatment
- > All cohorts completed Stage 1 enrollment
- > Median age overall was 65.0 years (range 34–88); baseline characteristics and median treatment duration in the safety analysis set are shown in **Table 1**

RESULTS (CONTINUED)

Patients, N

Median time since diagnosis, years (rang

Lines of prior cancer therapy, n (%)

ECOG performance status, n (%)

Median treatment duration, days (range

endometrial carcinoma: ECOG. Eastern Cooperative Oncoloay Group: Lymph, lymphoma; mCRPC, metastatic-castration-resistant prostate cancer Meso, pleural or peritoneal mesothelioma; ND, not defined; OCCC, ovarian clear cell carcinoma

Efficacy

- > Best confirmed responses (**Table 2**) show that three of the five cohorts using the Simon 2-stage design have achieved eligibility for Stage 2 expansion (M2: OCCC, M3: EC, and M5: Meso)
- In cohort M1 (other ARID1A mutant solid tumor), one patient has a currently unconfirmed partial response (PR)
- In cohort M4 (lymphoma), which uses single-stage enrollment, two patients have had a best response of complete response (CR), and one patient with PR (all with peripheral T-cell lymphoma)
- In cohort M6: mCRPC, the best response was stable disease (in six patients) and Stage 2 will not commence
- > The best percentage changes in target lesion diameter from baseline for patients in the solid tumor cohorts are shown in Figure 2
- > Treatment duration and response assessments for patients in the efficacy evaluable set for all cohorts are shown in Figure 3

Table 2. Best responses

		M1 Other	M2 OCCC	M3 EC	M4 Lymph	M5 Meso	M6 mCRPC
Efficacy evaluable, N		10	14	8	12	21	10
Best confirmed response*, n	Complete response Partial response Stable disease	0 0 4	0 1 7	0 2 2	2 1 0	0 2 11	0 0 6
Best response (confirmed or unconfirmed)*, n	Complete response Partial response Stable disease	0 1 3	0 4 4	0 3 1	2 1 0	0 3 10	0 0 6
No response, n	Progressive disease Not evaluable Discontinued [†]	2 0 4	6 0 0	2 1 [‡] 1	4 0 5	6 0 2	3 0 1

*Per RECIST 1.1 or modified RECIST 1.1 as applicable except in M4 (2014 Lugano criteria⁷, in which confirmation is not required). [†]Discontinued treatment without a response assessment. [‡]Patient had stable disease assessment prior to the required 28 days. EC, endometrial carcinoma; Lymph, lymphoma; mCRPC, metastatic-castration-resistant prostate cancer; Meso, pleural or peritoneal mesothelioma; OCCC, ovarian clear cell carcinoma; RECIST, Response Evaluation Criteria in Solid Tumours

Table 1. Baseline characteristics and median treatment duration (safety analysis set)

		M1 Other	M2 OCCC	M3 EC	M4 Lymph	M5 Meso	M6 mCRPC	Overall
		12	14	10	12	23	10	81
ge)		1.4 (0–5.0)	3.5 (0.6–8.8)	3.2 (0.6–6.6)	3.3 (0.6–7.6)	2.2 (0.6–7.0)	6.7 (1.2–19.6)	2.8 (0–19.6)
	1 2 ≥3 ND	0 6 (50.0) 5 (41.7) 1 (8.3)	4 (28.6) 2 (14.3) 8 (57.1) 0	2 (20.0) 3 (30.0) 5 (50.0) 0	0 4 (33.3) 8 (66.7) 0	5 (21.7) 9 (39.1) 6 (26.1) 3 (13.0)	0 2 (20.0) 8 (80.0) 0	11 (13.6) 26 (32.1) 40 (49.4) 4 (4.9)
	0 1	2 (16.7) 10 (83.3)	6 (42.9) 8 (57.1)	4 (40.0) 6 (60.0)	2 (16.7) 10 (83.3)	12 (52.2) 11 (47.8)	1 (10.0) 9 (90.0)	27 (33.3) 54 (66.7)
e)		36.0 (15–229)	70.5 (2–350)	60.5 (19–336)	62.5 (3–295)	78.0 (2–428)	92.0 (8–232)	57.0 (2–438)

Safety

- In the safety analysis set, 80 patients (98.8%) had ≥1 treatment-emergent AE (TEAE)
- 30 patients (37.0%) had ≥1 serious TEAE
- 53 patients (65.4%) had ≥1 Grade 3 or higher TEAE > TEAEs considered at least possibly related to tulmimetostat
- occurred in 74 patients (91.4%)
- considered at least possibly related to tulmimetostat related to tulmimetostat were thrombocytopenia and
- 12 (14.8%) patients had ≥1 possibly related serious TEAE -39 (48.1%) patients had \geq 1 Grade 3 or higher TEAE - The most frequent TEAEs considered at least possibly diarrhea (Table 3, Figure 4)
- > A total of 63 patients (77.8%) experienced TEAEs leading to dose modifications, 31 (38.3%) to dose reductions, and 57 (70.4%) to dose interruptions
- > A total of nine patients (11.1%) discontinued treatment and 14 (17.3%) discontinued the study owing to TEAEs

- Five (6.2%) discontinuations were considered at least possibly related to tulmimetostat > Five (6.2%) patients died due to TEAEs, none considered

- related to tulmimetostat
 - Table 3. Most frequently reported TEAEs* considered at least possibly related to tulmimetostat
 - Grade ≥3 **Preferred Term** Any grade 41 (50.6) 20 (24.7) Thrombocytopenia 37 (45.7) 9 (11.1) Diarrhea 29 (35.8) 12 (14.8) Anemia 27 (33.3) 1 (1.2) Nausea 26 (32.1) Fatigue 22 (27.2) 1 (1.2) Alopecia 20 (24.7) Dysgeusia 18 (22.2) (1.2) Vomiting 12 (14.8) 1 (1.2) Decreased appetite 13 (16.0) 11 (13.6) Neutropenia 10 (12.3) Weight decreased

*Occurring in ≥10% of patients. Data are N (%) patients in the safety analysis set TEAE, treatment-emergent adverse event.