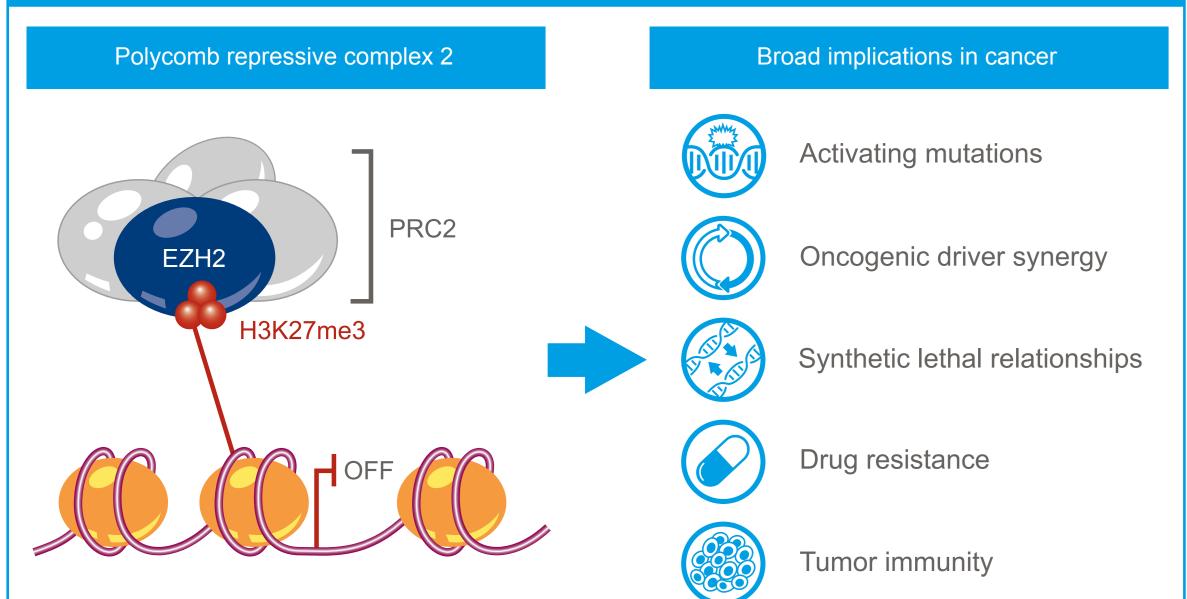
Preliminary Clinical Data from Ongoing Phase II Study with Enhancer of Zeste Homolog 2 (EZH2) Inhibitor CPI-0209 in Patients with Advanced Solid Tumors or Hematologic Malignancies


¹University of Chicago, Chicago, IL, USA; ²Emory University School of Medicine and Winship Cancer Institute, Boston, MA, USA; ³University of Virginia, Charlottesville, VA, USA; ⁴Dana-Farber Cancer Institute, Boston, MA, USA; ³University of Virginia, Charlottesville, VA, USA; ⁴Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Dana-Fa ⁶Service d'hématologie clinique du CHU de Nantes, France; ⁷Centrum Medyczne Pratia Poznań, Skorzewo, Poland; ⁸Hospital Universitario de Salamanca, IBSAL, Salamanca, IBSAL, Salamanca, IBSAL, Salamanca, IBSAL, Salamanca, IBSAL, Salamanca, Spain; ⁹MorphoSys US Inc., Boston, MA, USA; ¹⁰MorphoSys AG, Planegg, Germany; ¹¹Swedish Cancer Institute, Seattle, WA, USA

Poster PB079 - New Drugs; Wednesday 26 October 2022 12.00–20.00

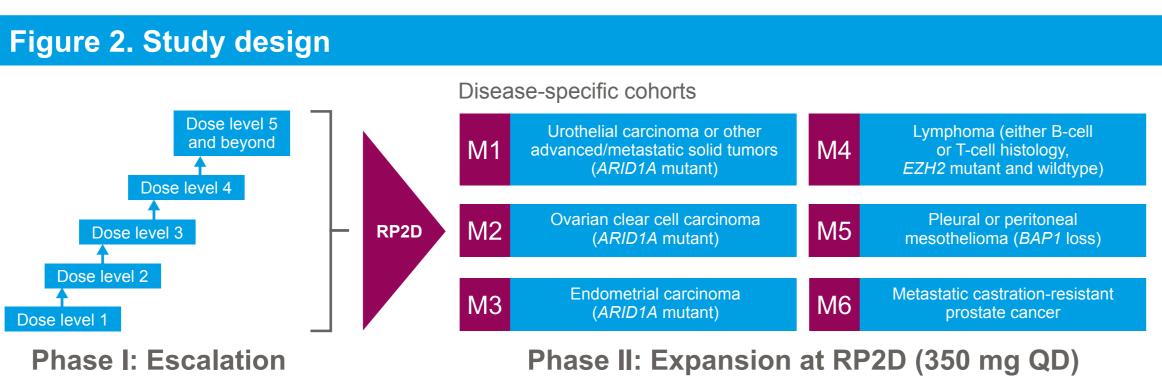
Background

- The histone methyltransferase enhancer of zeste homolog 2 (EZH2) is the enzymatic catalytic subunit of the polycomb repressive complex 2 (PRC2) that alters gene expression via trimethylation of lysine 27 on histone 3 (H3K27me3)^{1–3} (Figure 1)
- Emerging evidence suggests that EZH2 is overexpressed in many cancer types and has a pivotal role in disease progression^{1–3}

Figure 1. EZH2 function and potential role in tumorigenesis

EZH2, enhancer of zeste homolog 2; H3K27me3, trimethylation of histone H3 lysine 27; PRC2, polycomb repressive complex 2.

- Moreover, tumors that harbor mutations in epigenetic genes, such as ARID1A and BAP1, appear to be highly sensitive to EZH2 inhibition¹
- CPI-0209 is a second-generation, oral, small molecule, selective inhibitor of EZH2 and EZH1 that has demonstrated extended on-target residence time with increased potency compared with first-generation EZH2 inhibitors in preclinical studies^{4,5}
- It has shown significant antitumor effects with a dose-dependent decrease in tumor H3K27me3 levels
- Increased activity was observed in ARID1A mutant models of bladder, endometrial and ovarian cancer models treated with CPI-0209
- The Phase I dose-escalation part of the ongoing Phase I/II study (NCT04104776), which is evaluating CPI-0209 in advanced solid tumors and lymphomas, selected a recommended Phase II dose (RP2D) of 350 mg (ASCO 2021⁵, also see updated results in poster PB068⁶ at this congress)


Objective

To report preliminary results from the ongoing Phase II expansion study, which aims to evaluate the antitumor activity and safety of CPI-0209 as monotherapy across multiple tumor types

Methods

Study design

- The Phase II part comprises treatment with CPI-0209 at the RP2D in six diseasespecific cohorts (**Figure 2**)
- Patients in Cohorts M1, M2, M3, M5, and M6 will be enrolled at 10 to 29 patients per cohort, using a Simon 2-stage design
- Extension from stage 1 (n=10) to stage 2 (plus n=19) enrollment requires at least one confirmed partial response (PR) or complete response (CR) in stage 1
- Cohort M4 will enroll 10 patients with relapsed/refractory peripheral T-cell lymphoma (PTCL) and 10 patients with diffuse large B cell lymphoma (DLBCL), including at least five patients with documented germinal-center B-cell-like DLBCL (GCB-DLBCL) with at least one EZH2 hotspot mutation
- Patients will receive CPI-0209 350 mg orally QD continuously in 4-week cycles (28 days) and be monitored for hematological adverse events with complete blood count checks on C1D10, C1D15, and C1D22

Eligibility criteria

Key inclusion criteria

- All eligible patients are aged \geq 18 years with a life expectancy of \geq 12 weeks, ECOG PS 0–1, and adequate bone marrow, renal, and liver function
- Patients in the M1, M2, M3, and M5 cohorts have histologically or cytologically confirmed progressive tumors with known ARID1A mutation/BAP1 loss and measurable as per RECIST 1.1 criteria
- Patients in the M2 and M3 cohort include those who received ≥1 line of platinum-based chemotherapy and had progressive disease on other standard-ofcare treatments
- The M4 cohort includes patients ineligible for hematopoietic cell transplantation, with refractory/relapsed or progressive PTCL or DLBCL
- therapy or beyond In DLBCL, patients had relapsed or refractory disease with ≥2 prior therapy lines, and were not considered candidates to receive chimeric antigen receptor-T cell (CAR-T) therapy
- Patients in the M6 cohort had metastatic disease with progression during prior therapies (at least one androgen receptor signaling inhibitor and at least one taxane-based therapy; patients known to possess a homologous recombination repair (HRR) mutation must have been treated with prior PARP inhibitor therapy), and baseline testosterone \leq 50 ng/dL (\leq 2.0 nM) with surgical or ongoing medical castration maintained

Key exclusion criteria

 Patients with various known medical conditions, prior allogeneic hematopoietic cell transplant or various anticancer treatments within applicable timeframes prior to study treatment were excluded

Table 1. Key s

Primary Antitumor activity of

Secondary

Safety, tolerability a efficacy of CPI-0209

PK/PD profile of CP. Exploratory

Characterization of to explore the assoc safety, and respons

Identification of cano mutations, genetic protein- or RNA-bas

Evaluation of NCI (F patient-reported out

*Characterization in tumor and/or peripheral tissues AE, adverse event; GCIG, Gynecologic Cancer Intergroup; CR, complete response; DCR, disease control rate; DoR, duration of response; H3K27me3, trimethylation of histone H3 lysine 27; NCI (PRO-CTCAE), National Cancer Institute Patient Reported Outcome-Common Terminology Criteria for Adverse Events; ORR, objective response rate; OS, overall survival; PCWG3, Prostate Cancer Clinical Trials Working Group 3; PD, pharmacodynamics; PFS, progression-free survival; PK, pharmacokinetics; PR, partial response; PRO, patient-reported outcome; SD, stable disease; TTR, time to response.

Hedy Kindler,¹ R. Donald Harvey,² Linda R. Duska,³ Leena Gandhi,⁴ Ryan J. Sullivan,⁵ Thomas Gastinne,⁶ Michal Kwiatek,⁷ Alejandro Martín García-Sancho,⁸ Nira Hadar,⁹ Lennart Kann,¹⁰ Nicola Faulhaber,¹⁰ Charles Drescher¹¹

EZH2, enhancer of zeste homolog 2; QD, once daily; RP2D, recommended Phase II dose (as monotherapy).

- In PTCL, patients had neither CR after first-line therapy nor PR after second-line

udy objectives and endpoint					
tives	Study endpoints				
f CPI-0209	 ORR (CR+PR) as assessed by the investigator according to: RECIST 1.1 for solid tumors including peritoneal mesothelioma 2014 Lugano criteria for lymphoma modified RECIST 1.1 for pleural mesothelioma PCWG3 criteria for prostate cancer 				
and preliminary 9	 OS PFS, DoR, and TTR AEs and changes in laboratory values DCR (best overall response of CR, PR, or SD) ORR per GCIG-defined CA-125 response criteria (ovarian cancer) 				
PI-0209*	PK and PD parameters				
PD biomarkers ciation with PK, se*	Changes in H3K27me3 levels*				
ncer-associated alterations, or sed signatures	 RNA- and/or protein-based changes* Genomic, immunophenotypic, transcriptomic, proteomic, other molecular features, and tumor biopsies at baseline and on treatment 				
PRO-CTCAE) Itcomes	 PRO version of PRO-CTCAE questionnaire 				

- Additional exclusion criteria for the M6 cohort include:
- study treatment, 5α reductase inhibitors, ketoconazole, estrogens, or progesterones ≤2 weeks of study treatment

Study endpoints

Objectives and key endpoints for the Phase II expansion part of the study are shown in Table 1

Results

Patients

- As of 16 July 2022, 52 patients were enrolled in the Phase II expansion study
- (Table 2)
- post-baseline tumor assessment (efficacy evaluable patients)
- No cohort had yet completed stage 1 of the 2-stage design

Table 2. Baseline demographics and dise
Total (N)
Age in years, mean (SD)
Sex
Male/female, n (%)
Race and ethnicity*
White
Black or African American
Asian
Hispanic or Latino
Other/not reported
Time in years since initial diagnosis, mean (SD)
Median follow-up, months (95% CI)
Cohort, n (%)
M1: Urothelial carcinoma or other advanced metast
M2: Ovarian clear cell carcinoma (ARID1A mutant)
M3: Endometrial carcinoma (ARID1A mutant)
M4: Lymphoma (either B-cell or T-cell histology, EZ
M5: Pleural or peritoneal mesothelioma (BAP1 loss
M6: Metastatic castration-resistant prostate cancer
Prior lines of therapies, n (%)
1
2
3
>3

Date of data-cut: July 16, 2022. *More than one category possible per patient. CI, confidence interval; EZH2, enhancer of zeste homolog 2; SD, standard deviation.

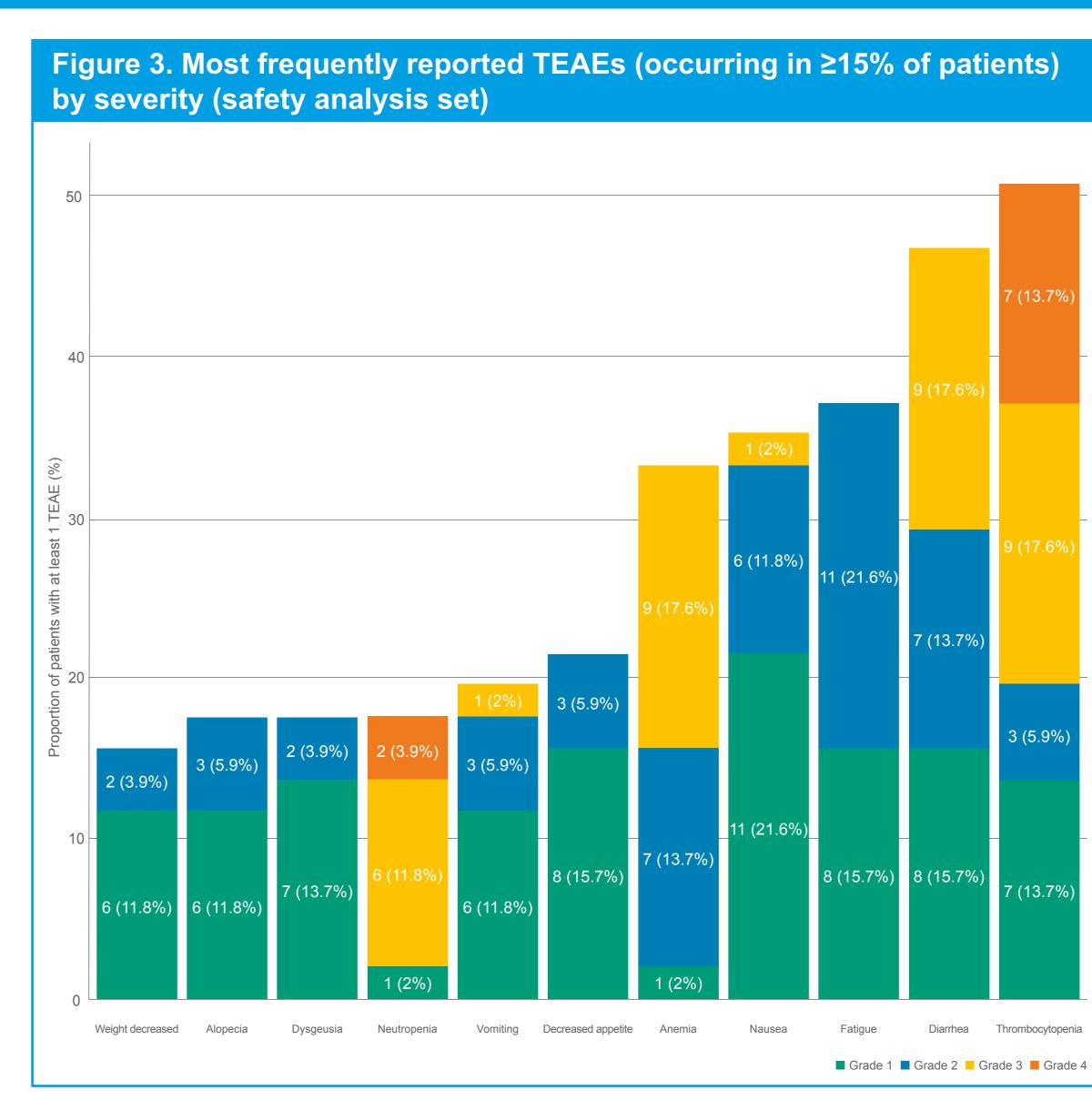
Safety

- The majority of the most frequently reported treatment-emergent adverse events vomiting and nausea (Figure 3)
- 42 patients (82.4%) experienced at least one TEAE assessed by the investigator as possibly related to CPI-0209
- TEAEs considered possibly related to CPI-0209 in ≥15% of patients were vomiting (15.7%)
- 18 patients (35.3%) experienced at least one serious TEAE (5.9%), respiratory failure (3.9%), and anemia (3.9%)
- Serious AEs considered by the sponsor to be related to CPI-0209 were thrombocytopenia (7.8%), anemia (3.9%), and diarrhea (3.9%)
- M4 and M5), all due to progressive disease and not attributed to CPI-0209

- Bone-only disease without nodal disease and no evidence of visceral spread Prior treatment with first-generation androgen receptor antagonists ≤4 weeks of

- 51 patients (98%) received at least one dose of study drug (safety analysis set)

- 34 patients (65%) received at least one dose of study drug and had at least one


ase characteristics (safety analysis se 64.8 (11.25) 28 (55)/23 (45) 44 (86) 2 (4) 2 (4) 2 (4) 3 (6) 4.2 (3.55) 3.48 (2.1, NE) static solid tumor (*ARID1A* mutant) 5 (10) 10 (20) 5 (10) ZH2 mutant and wildtype) 11 (22) 10 (20) 10 (20) 12 (24) 13 (25) 8 (16) 18 (35)

(TEAEs) were Grade 1 or 2; Grade 3 or higher events were cytopenias, diarrhea,

thrombocytopenia (47.1%), diarrhea (37.3%), nausea (29.4%), anemia (27.5%), fatigue (25.5%), neutropenia (17.6%), dysgeusia (17.6%), alopecia (15.7%), and

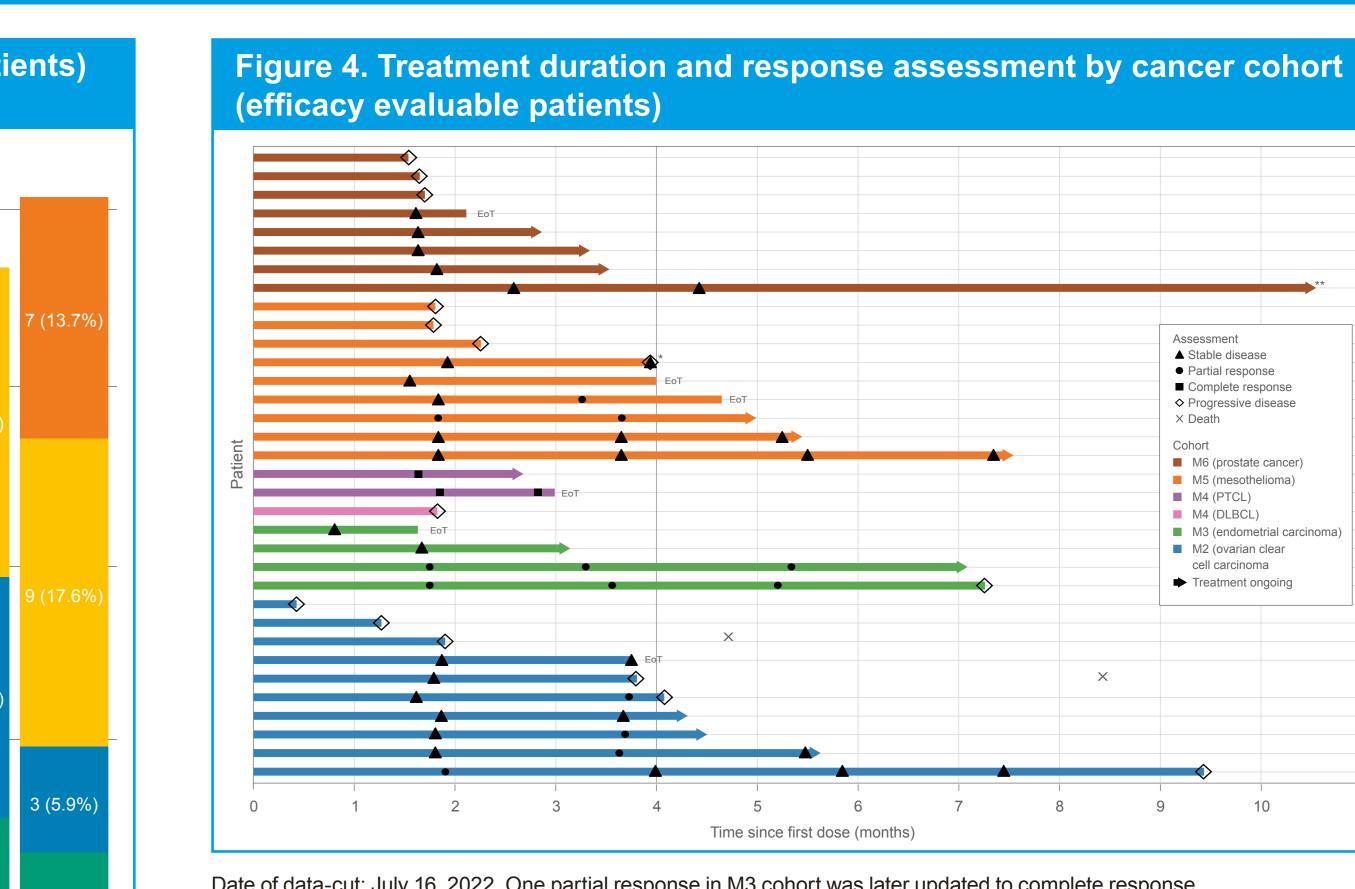
- Serious TEAEs reported in ≥2 patients were thrombocytopenia (7.8%), diarrhea

• One patient (2.0%) experienced a Grade 5 TEAE of respiratory failure, not attributed to CPI-0209; four other deaths were reported (two patients in M2, and one each in

Date of data-cut: July 16, 2022

TEAE, treatment-emergent adverse event.

- 16 patients (31.4%) reported TEAEs leading to CPI-0209 dose reduction - Thrombocytopenia (17.6%), anemia (11.8%), and diarrhea (5.9%) were reported in ≥2 patients
- 33 patients (64.7%) reported TEAEs leading to CPI-0209 dose interruptions
- Reported in ≥2 patients: thrombocytopenia (27.5%), diarrhea (19.6%), anemia (13.7%), neutropenia (7.8%), nausea (5.9%), fatigue (3.9%), weight decreased (3.9%), and decreased appetite (3.9%)
- Seven patients (13.7%) reported TEAEs leading to CPI-0209 discontinuation - Respiratory failure (3.9%), anemia, thrombocytopenia, diarrhea, nausea, upper gastrointestinal hemorrhage, vomiting, fatigue, rash pustular, and pleuritic pain (2.0% each)


Efficacy

- Treatment duration and response assessment by cancer cohort per patient with at least one post-baseline tumor assessment (efficacy evaluable patients) are shown in Figure 4
- Preliminary responses observed by the data cut-off date of July 16, 2022 are shown in Table 3
- Updated observations based on preliminary data (as of September 15, 2022) occurring after the data cut-off date (July 16, 2022):
- One confirmed PR in the M2 cohort (confirmatory assessment of previously unconfirmed PR)
- One confirmed CR in the M3 cohort (updated classification from previously PR)

Table 3. Best unconfirmed response by cancer cohort								
Category, n (%)	Urothelial* (M1) (N=5)	Ovarian (M2) (N=10)	Endometrial (M3) (N=5)	Lymphoma (M4) (N=11)	Mesothelioma (M5) (N=10)	Pro ((N		
Efficacy evaluable	0	10 (100)	4 (80.0)	3 (27.3)	9 (90.0)	8 (
Complete response	0	0	0	2 (66.7)	0			
Partial response	0	4 (40.0)	2† (40.0)	0	2 (22.2)			
Stable disease	0	3 (30.0)	2 (40.0)	0	4 (44.4)	5 (
Progressive disease	0	3 (30.0)	0	1 (33.3)	3 (33.3)	3 (
-					· · · · · · · · · · · · · · · · · · ·			

Date of data-cut: July 16, 2022

*Or other advanced metastatic ARID1A mutant solid tumor; [†]One partial response in M3 cohort was later updated to complete response

Date of data-cut: July 16. 2022. One partial response in M3 cohort was later updated to complete response *At the time of the data-cut, the study site had entered both SD and PD, but has subsequently reclassified the visit assessment to S **At the time of the data cut, after completion of 5 treatment cycles, patient was discontinued from the treatment but not yet captured in the case report form EoT. end of treatment

Summary

- The safety profile of CPI-0209 is consistent with the known mechanism of action of EZH2 inhibition, preclinical toxicology and Phase I observations for this compound
- These preliminary data in heavily pre-treated patients with multiple tumor types, including those with ARID1A alterations or BAP1 loss, support ongoing investigation of CPI-0209 treatment
- Recruitment and data generation are ongoing
- Following the confirmed PR observed in each of the ovarian clear cell (M2), endometrial (M3), and mesothelioma (M5) cohorts, these cohorts are eligible for stage 2 expansion

Acknowledgments

This study was funded by Constellation Pharmaceuticals Inc., a MorphoSys Company. Medical writing assistance was provided by Pavitra Joshi of Syneos Health, UK, and funded by MorphoSys AG.

Disclosures

CPI-0209 is an investigational new drug and has not been approved by any regulatory authority HK: advisory or consulting fees from Bluestar Genomics, Deciphera, Tempus. RDH: Research funding from Abbisko, AbbVie, Actuate, Amgen, AstraZeneca, Bayer, Bristol-Myers Squibb, Boston Biomedical, Genmat GlaxoSmithKline, Infinity, InhibRx, Janssen, Merck, Mersana, Meryx, Morphosys, Nektar, Novartis, Pfizer, Regeneron, Sanofi, Sutro, Takeda, Turning Point Therapeutics, Xencor; advisory or consulting fees from Amgen, GlaxoSmithKline. LRD: Research funding from Aduro BioTech, Advaxis, Arch, Constellation, Corcept, Eisai, Ellipses, GlaxoSmithKlein/Novartis, Inovio, LEAP Therapeutics, Ludwig, Lycera, Merck, Mersana, Miraso Morab, MorphoTek, Plexxicon, Quest Pharmtech, Syndax, Verastem; royalties from Elsevier, JB Learning advisory/consulting fees from Inovio, Regeneron, UpToDate. LG: advisory or consulting fees from Beigene BMS, Eisai, Mersana, Pliant Therapeutics, Riva Therapeutics, Tentarix, Xilio: Board of Directors for Brigh Peak, Neximmune; speaker's honoraria from Tempus; stock/stock options, Lilly. RJS: Consultancy: BMS, Eisai Iovance, Merck, Novartis, OncoSec, Pfizer, Replimune: Grants or contracts from Merck: Participation on a Data Safety Monitoring Board or Advisory Board: Yale University, Duke University. TG: Speaker or educational fees or honoraria, Takeda, Kyte/Gilead; support for meetings/travel, Kyte/Gilead; Advisory or Data Safety Monitoring Board, Takeda. MK: no disclosures. AMG-S: advisory or consulting fees from Roche, BMS/Celgene Kyowa Kirin, Clinigen, Eusa Pharma, Novartis, Gilead/Kite, Incyte, Lilly, Takeda, ADC Therapeutics America, Miltenyi; payment or honoraria for speaker or education from Roche, BMS/Celgene, Janssen Gilead/Kite, Takeda, Eusa Pharma, Novartis; support for meetings/travel from Gilead/Kite, Janssen, Roche BMS/Celgene. NH: employment: MorphoSys US Inc. LK: employment and stock/ stock options, MorphoSys AG **NF:** employment: MorphoSys AG. **CD:** Research funding from NCI, Canary Foundation; Board Member for Rivkin Center for Ovarian Cancer Research, Powell-Drescher Ovarian Cancer Research Foundation; IPED Pillar Lead Paul G Allen Research Center at SCI

References

Overall tota

Phase I

34 (66.7

2 (5.9)

14 (41.2)

10 (29.4)

(62.5)

(37.5)

(N=51)

Eich ML, et al. Cancer Res 2020;80(24):5449-58. Hanaki S, et al. J Biochem 2021;170(1):1–4. Kang N, et al. Epigenomics 2020;12(16):1457–76 . Keller, PJ et al. [Abstract] Clin Cancer Res 2020;26(15 Suppl): A18 Lakhani NJ, et al. [Abstract] J Clin Oncol 2021;39:(15_Suppl): 3104 . Papadopoulos KP, et al. ENA 2022. PB068

PDF of this poster