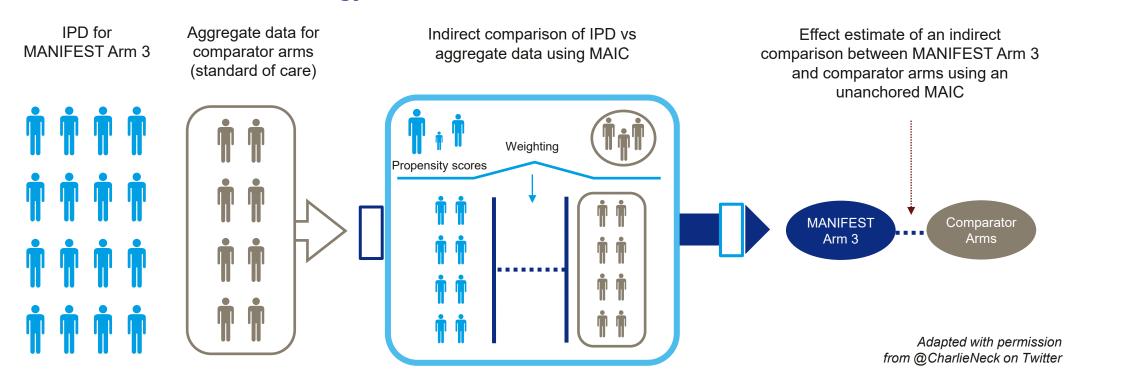
Matching-Adjusted Indirect Comparison (MAIC) of Pelabresib (CPI-0610) in Combination With Ruxolitinib vs Ruxolitinib or Fedratinib Monotherapy in Patients With Intermediate- or High-risk Myelofibrosis Vikas Gupta,¹ John Mascarenhas,² Marina Kremyanskaya,² Raajit K Rampal,³ Moshe Talpaz,⁴ Jean-Jacques Kiladjian,⁵ Alessandro Vannucchi,⁶ Srdan Verstovsek,⁷ Gozde Colak,⁸

¹Princess Margaret Cancer Center, New York, NY, US | ⁴University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, US | ⁵Hôpital Saint-Louis, Université de Paris, Paris, France ⁶Azienda Ospedaliero-Universitaria Careggi, University of Florence, Italy | ⁷University of Texas MD Anderson Cancer Center, Houston, TX, US | ⁸Constellation Pharmaceuticals, Inc., a MorphoSys AG, Planegg, Germany | ¹⁰Guy's and St Thomas' NHS Foundation Trust, London, UK

Background

- JAKis ruxolitinib and fedratinib are the current standard of care in higher-risk MF patients with platelets \geq 50 × 10⁹/L and ineligible for allogeneic stem cell transplant.¹ Ruxolitinib, fedratinib and momelotinib have demonstrated splenic responses and symptom improvement in pivotal Phase 3 trials^{2–5}
- Despite clinical success with JAKi therapy, unmet medical need still exists due to:
- <50% of patients achieving a spleen response (SVR35 response rates of 29-42% at Week 24 in previous pivotal studies of</p> ruxolitinib or fedratinib)^{2–4,6}
- <50% of patients achieving total symptom score reduction (TSS50 rates of 34–46% in previous pivotal studies of ruxolitinib) or fedratinib)^{2,4,6}
- Progressive disease and toxicity, which frequently lead to JAKi discontinuation⁷
- Pelabresib (CPI-0610) is an investigational, oral, small-molecule BET inhibitor, and preclinical data have indicated that combined JAK/BET inhibition can lead to synergistic effects in MF⁸
- The combination of pelabresib with ruxolitinib showed encouraging responses in SVR35 (68% at Week 24) and TSS50 (56%) at Week 24), and was generally well tolerated in JAKi treatment-naïve patients with intermediate- or high-risk MF in Arm 3 of the open-label Phase 2 MANIFEST study (NCT02158858)⁹
- In the absence of head-to-head data comparing this combination with JAKis, MAIC analysis was used to compare data from MANIFEST with the following randomized, double-blind Phase 3 JAKi studies
- COMFORT-I (NCT00952289) compared oral ruxolitinib BID (n=155) with placebo (n=154),² and COMFORT-II (NCT00934544) compared ruxolitinib (n=146) or best available therapy (n=73),³ both in patients with primary MF, post-PV MF or post-ET MF^{2,3}
- JAKARTA (NCT01437787), comparing oral fedratinib 400 mg QD (n=96) or 500 mg (n=97) with placebo (n=96) in patients with intermediate-2 or high-risk primary MF, post-PV MF or post-ET MF⁴
- SIMPLIFY-1, a noninferiority trial comparing momelotinib 200 mg QD (n=104) with ruxolitinib BID in JAKi-naïve patients with high-risk, intermediate-2 risk or symptomatic intermediate-1 risk MF⁶

Objective


 To compare SVR35 and TSS50 response rates of pelabresib in combination with ruxolitinib vs JAKi monotherapy in the MF setting via unanchored MAIC analysis

Rationale

- No direct comparative data exist between pelabresib with ruxolitinib and JAKi monotherapy
- Indirect data comparisons are subject to bias due to cross-trial differences
- MAIC analysis adjusts for differences in baseline characteristics and is an attractive method for indirect treatment comparison using individual patient-level data (IPD) from one study vs aggregate study-level data (ASD) from comparator studies

Methods

Overview of MAIC Methodology

- MAIC resulted in complete balance for all categorical baseline characteristics and a high degree of balance for continuous baseline characteristics for both ITT and mITT
- The maximum difference in medians for continuous baseline characteristics observed in any comparison was 29 cells/µl for platelet count, 0.2 g/L for hemoglobin and 191 cm³ for spleen volume in ITT, and 20 cells/µl for platelet count, 0.2 g/L for hemoglobin and 191 cm³ for spleen volume in mITT

Effective Sample Size

• ITT: Excluding IPSS Int-1 patients resulted in smaller ESS and in some cases loss of statistical significance (Figures 3 and 4)

SVR35 in mITT Population

comparison; MF, myelofibrosis; MFSAF, Myelofibrosis Symptom Assessment Form; mITT, modified intent-to-treat; pela, pelabresib; pt, patient; PV, polycythemia vera; QD, once-daily; RR, response rate; RRR, response

Debarshi Dev.⁹ Claire Harrison¹⁰

Methods

Data Sources

- MANIFEST Arm 3: open-label, Phase 2 study in JAKi-naïve adult patients treated with pelabresib and ruxolitinib
- Four comparator studies: randomized, double-blind Phase 3 studies in JAKi-naïve adult patients (≥18 years) with primary or secondary MF
- COMFORT-I: ruxolitinib monotherapy
- COMFORT-II: ruxolitinib monotherapy
- JAKARTA: fedratinib (400 mg and 500 mg) monotherapy • SIMPLIFY-I: ruxolitinib monotherapy, momelotinib
- monotherapy
- IPD were available for MANIFEST Arm 3, while published ASD were available for COMFORT-I and II, SIMPLIFY-1 and JAKARTA

MAIC Analysis

- Matching 8 prognostic factors/effect modifiers
- Gender, MF subtype, IPSS risk status, previous hydroxyurea use, platelet count, hemoglobin levels, spleen volume and JAK2V617F status
- Handling of missing values
- IPSS Int-1
- MANIFEST and SIMPLIFY-1 included patients with IPSS Int-1; COMFORT I and II and JAKARTA did not
- **ITT:** IPSS Int-1 were excluded from MANIFEST prior to matching
- D mITT: IPSS Int-1 were included and combined with IPSS Int-2 Patients with missing values (3 pts with missing MF subtype and 1 pt with missing platelet) for the matching prognostic factors at baseline were excluded both from ITT and mITT

nonresponders

- arms, an unanchored MAIC analysis was performed Weights were estimated to match IPD with the summary statistics (eg mean or median, proportions) for the 8 prognostic factors
- represents the number of independent nonweighted individuals who would be required to provide an estimate with the same precision as the weighted sample estimate
- The effective sample size (ESS) derived from the weights

Results

Baseline Characteristics

- mITT: When IPSS Int-1 patients were included, sufficiently high ESS values were obtained (Figure 2)
- Adjusting for differences, statistically significant and clinically meaningful adjusted RRRs were observed for comparisons of pelabresib combined with ruxolitinib versus all comparators for mITT (Figure 2)

Figure 2: Forest Plot of SVR35 Response Rate Ratios in mITT (including pts with IPSS Int-1)

	•	rate ratio				
Comparator stud	0.5	1 1.5 2 2.5 3 3.5 4	Response rate ratio	95% CI	ESS	p-value
COMFORT-I						
Unweighted		⊨●	1.64	(1.29, 2.08)	80	<0.0001
Weighted*		i ⊨4	1.57	(1.10, 2.24)	19.2	0.0121
COMFORT-II						
Unweighted		¦ ⊢ ∙1	2.18	(1.65, 2.89)	80	<0.0001
Weighted*		¦	1.82	(1.17, 2.83)	22.1	0.0080
SIMPLIFY-1 Ruxolitinib						
Unweighted		¦ ⊢•1	2.37	(1.83, 3.06)	80	<0.0001
Weighted*		⊢ → →	2.13	(1.51, 3.02)	34.6	<0.0001
SIMPLIFY-1 Momelotinib						
Unweighted		¦ ⊢ ∙1	2.59	(1.99, 3.39)	80	<0.0001
Weighted*		⊢ → →	2.26	(1.57, 3.27)	33.4	<0.0001
JAKARTA 400 mg		, 				
Unweighted		¦ ¦ ⊢●	1.89	(1.39, 2.55)	80	<0.0001
Weighted*		↓ 	1.76	(1.16, 2.66)	19.7	0.0078
JAKARTA 500 mg						
Unweighted		¦ ↓ ↓ ● ● ↓	1.71	(1.29, 2.27)	80	0.0002
Weighted*		⊢ −−−−1	1.55	(1.06, 2.27)	31.4	0.0231
		Favor Pela+Ruxo) -			
	0.5	1 1.5 2 2.5 3 3.5 4				

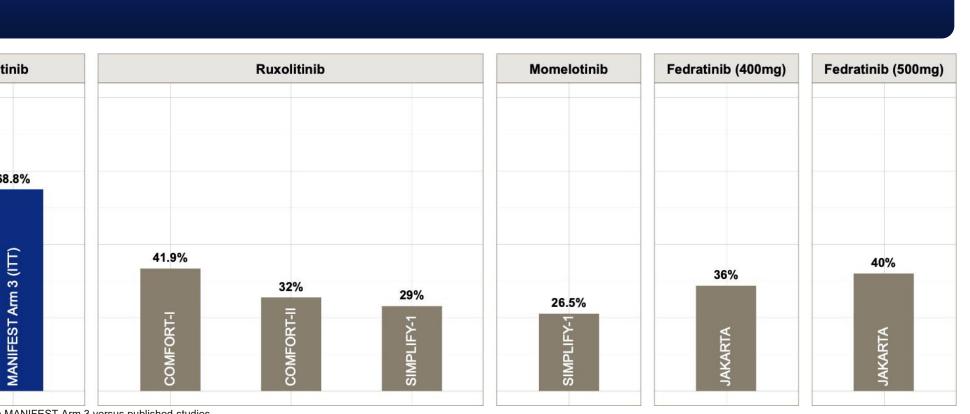
confidence intervals and p values are calculated using the robust sandwich estimation of variance. RRR = (response rate in pelabresib + ruxolitinib)/(response rate in comparator arm)

SVR35 in ITT Population

• RRRs >1 were observed for comparisons of MANIFEST Arm 3 versus all comparators for ITT (Figure 3)

Figure 3: Forest Plot of SVR35 Response Rate Ratios in ITT (excluding pts with IPSS Int-1)

	Respons	e rate ratio				
Comparator study	0.5	1 1.5 2 2.5 3 3.5 4	Response rate ratio	95% CI	ESS	p-value
COMFORT						
Unweighted		¦ ⊢-•1	1.59	(1.24, 2.04)	69	0.0003
Weighted*	⊢	÷ • · · · · · · · · · · · · · · · · · ·	1.27	(0.76, 2.10)	14.8	0.3623
COMFORT-II		- 				
Unweighted		¦ ⊢•	2.12	(1.58, 2.83)	69	< 0.0001
Weighted*	⊢	+	1.46	(0.81, 2.63)	14.9	0.2070
SIMPLIFY-1 Ruxolitinib		 				
Unweighted		· · · · · ·	2.37	(1.83, 3.06)	80	<0.0001
Weighted*		⊢ → − − 1	2.13	(1.51, 3.02)	34.6	< 0.0001
iIMPLIFY-1 Momelotinib						
Unweighted			2.59	(1.99, 3.39)	80	< 0.0001
Weighted*		⊢ → → →	2.26	(1.57, 3.27)	33.4	< 0.0001
AKARTA 400 mg		1 				
Unweighted		¦ ⊢ •−−1	1.83	(1.34, 2.50)	69	0.0002
Weighted*	⊢–	•	1.53	(0.80, 2.90)	8.7	0.1951
AKARTA 500 mg		1 1 1				
Unweighted		¦ ⊢ ● 1	1.66	(1.24, 2.23)	69	0.0008
Weighted*	H		1.37	(0.87, 2.15)	22.5	0.1785
Fa	wor comparator	Favor Pela+Rux	o			


confidence intervals and p values are calculated using the robust sandwich estimation of variance. RRR = (response rate in pelabresib + ruxolitinib)/(response rate in comparator arm)

- Pelabresib + Ruxolitinit 68.8% Crude comparison of SVR35 rates in MANIFEST Arm 3 versus published studies

- Two patients in MANIFEST Arm 3 with missing baseline TSS and TSS=0 at baseline were included as
- Development of weighted study populations
- Given the absence of a connected network of treatment

Outcomes of Interest

- Response rate ratios (RRR) for SVR35 and TSS50 at Wk 24
- RRR = RR in MANIFEST Arm 3/RR in comparator arm • RRRs before and after weighting were estimated
- 95% confidence intervals were estimated using robust sandwich estimators for variance
- RRR >1 indicates that MANIFEST Arm 3 has a higher RR than comparator arms

TSS50 in ITT Population

 Adjusting for differences, RRRs >1 were observed for comparisons of MANIFEST Arm 3 versus all comparators (Figure 4)

Figure 4: Forest Plot of TSS50 Response Rate Ratios in ITT (excluding pts with IPSS Int-1)

	Respo	onse rate ratio				
Comparator study	0.5	1 1.5 2 2.5 3 3.5 4	Response rate ratio	95% CI	ESS	p-value
COMFORT-I						
Unweighted			1.20 (0	0.91, 1.58)	69	0.1866
Weighted*		• • • • • • • • • • • • • • • • • • •	1.51 (:	1.07, 2.14)	14.8	0.0185
SIMPLIFY-1 Ruxolitinib						
Unweighted			1.31 (1.01, 1.70)	80	0.0403
Weighted*		•i	1.40 (:	1.01, 1.93)	34.6	0.0431
SIMPLIFY-1 Momelotinib						
Unweighted		 ● 	1.93 (2	1.43, 2.59)	80	<0.0001
Weighted*		⊢	2.16 (2	1.55, 3.03)	33.4	<0.0001
JAKARTA 400 mg						
Unweighted		↓ ⊢	1.60 (2	1.13, 2.27)	69	0.0081
Weighted*		· · · · · · · · · · · · · · · · · · ·	2.10 (:	1.29, 3.40)	8.7	0.0027
JAKARTA 500 mg						
Unweighted		⊢ • • •	1.72 (1.20, 2.47)	69	0.0031
Weighted*			2.01 (:	1.34, 3.01)	22.5	0.0007
	Favor comparator	Favor Pela+Ruxo				
	0.5	1 1.5 2 2.5 3 3.5 4				

confidence intervals and p values are calculated using the robust sandwich estimation of variance. *RRR* = (response rate in pelabresib + ruxolitinib)/(response rate in comparator arm)

- Excluding IPSS Int-1 pts resulted in lower ESS and thus loss of statistical significance in some comparisons, though similar RRRs were estimated including or excluding IPSS Int-1 pts
- This MAIC analysis provides further evidence to support a potentially higher efficacy rate of pelabresib and ruxolitinib in combination versus JAKi monotherapy
- There is a need to improve on the current standard of care, and this combination may indicate a potential opportunity for improved outcomes
- The randomized, Phase 3 MANIFEST-2 study of pelabresib with ruxolitinib versus ruxolitinib monotherapy in JAKi treatment-naïve patients is currently ongoing (NCT04603495)

Name: Srdan Versto Email address: svei

- 1. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Myeloproliferative Neoplasms. Version 1. 2022. 2. Verstovsek S, et al. N Engl J Med 2012;366:799-807. 3. Harrison C, et al. N Engl J Med 2012;366:787–798. 4. Pardanani A, et al. JAMA Oncol 2015;1:643–651. 5. Chifotides HT, et al. J Hematol Oncol 2021;15:7. 6. Mesa RA, et al. J Clin Oncol 2017; 35:3844–3850. 7. Verstovsek S, et al. *Haematologica* 2015;100:479–488. 8. Kleppe M, et al. Cancer Cell 2018;33:785–787.

- 9. Verstovsek S, et al. Presented at the 63rd ASH Annual Meeting and Exposition;
- December 11, 2021; Atlanta, GA.

Conclusions

• The combination of pelabresib and ruxolitinib in Arm 3 of the the Phase 2 MANIFEST trial showed encouraging results; the MAIC analysis was performed to contextualize these results by accounting for differences in baseline characteristics in an indirect comparison with results from four Phase 3 studies

• In this MAIC analysis, a high degree of balance was obtained in 8 clinically important prognostic factors in order to minimize the potential for unknown confounding, a limitation of MAIC methodology

• Results of the analysis indicate potentially improved efficacy of the combination of pelabresib and ruxolitinib versus ruxolitinib, fedratinib (currently approved) and momelotinib (investigated in 1L) monotherapy for both spleen and symptom responses, as seen in crude cross-trial comparisons

• Similar results were obtained in ITT and mITT (ie including or excluding patients with IPSS Int-1)

Contact Information

ovsek. rstov@mdanderson.org

Acknowledgements

Andrea Parodi, MSc, Lead Expert Statistician, Valos SRL

References

Scan the QR code to download a PDF of this poster